La santé au travail

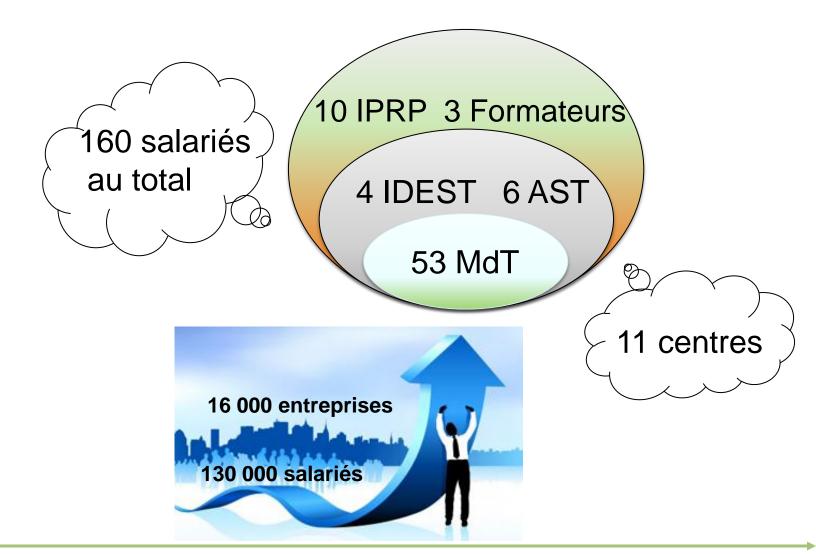
La santé des salariés fait battre le coeur de votre entreprise

GROUPEMENT INTERPROFESSIONNEL MEDICO-SOCIAL

www.gims13.com

02/12/2014

Le GIMS


Contexte

Méthodologie

IPRP

Médecin

AST

Problématique parking :Fumées d'échappement

Contexte

Méthodologie

IPRP

Médecin

AST

- Juin 2012 : fumées Diesel cancérogènes certaines pour l'Homme (CIRC)
- Retour AST / Médecins
 - Plaintes / questionnement salariés
- Besoin d'évaluer l'exposition des salariés dans les parkings
- Nombreuses demandes au pôle technique (20)
- **→** Capitalisation et homogénéisation

Contexte

Méthodologie

IPRP

Médecin

AST

- Répartition des tâches au sein de l'équipe pluridisciplinaire
 - IPRP : Prélèvements atmosphérique + évaluation des moyens de prévention
 - AST / Médecin : Biométrologie
- Partenaires extérieurs
 - CARSAT Sud-Est: Analyse des prélèvements atmosphérique
 - O CHU de Grenoble: Analyse des prélèvements biologique

Prélèvements atmosphérique

Contexte

Méthodologie

IPRP

Médecin

AST

Conclusion

Choix des polluants

- Analyseur à lecture directe
 - CO
 - NO
 - NO₂
- Prélèvement sur support à l'aide de pompes
 - HAP
 - Particules Diesel

Prélèvements atmosphérique

Contexte

Méthodologie

IPRP

Médecin

AST

Conclusion

Stratégie de mesurage

- Prélèvement d'ambiance
 - Local d'exploitation
 - Parking (bornes de sortie, près du local d'exploitation)
- Prélèvement en individuel
 - Nettoyage

		Lecture directe		Pompes	
	СО	NO	NO ₂	HAP	Particules Diesel
Local d'exploitation	$\sqrt{}$			$\sqrt{}$	\checkmark
Parking	\checkmark	\checkmark	√	V	$\sqrt{}$
Nettoyage					\checkmark

CARSAT

Contexte

Méthodologie

IPRP

Médecin

AST

- Conseils techniques
 - Choix des supports
 - Eléments de prévention à regarder
- Analyse des échantillons
 - Laboratoire CARSAT Sud-Est
 - Particules diesel à Bordeaux
- Aucun frais pour le SST et pour l'adhérent
- Discussions autour des résultats

Evaluation des moyens de prévention

Contexte

Méthodologie

IPRP

Médecin

AST

Conclusion

Local d'exploitation

- Surpression (test fumigène)
- Prise d'air neuf / Filtration (localisation, à l'écart de sources de pollution extérieure)
- Entretien et contrôle périodique du réseau de ventilation
- O Dossier d'installation

Parking

- **Ventilation** (débit, volume du local → taux de renouvellement)
- Déclenchement en fonction des concentrations en NO, CO, NO₂
- Seuil de déclenchement / Valeurs maximales / moyennes

Organisation du Nettoyage

- Sous-Traitance
- Horaires
- Procédé

Contexte

Méthodologie

IPRP

Médecin

AST

- Connaissance des entreprises
 - Aide dans le choix des parkings
 - Plus facile pour trouver des volontaires
- Explications aux salariés (courrier et sur site)
- Entretien préalable avec le salarié pour expliquer l'étude
- Ordonnance pour la Biométrologie
- Echanges sur les résultats
- Retour au salarié sur les résultats

Biométrologie

Contexte

Méthodologie

IPRP

Médecin

AST

- Planification des dates de recueil
 - Début de semaine / Début de poste
 - Fin de semaine / Fin de poste
 - **◊** Fin de semaine / Fin de poste +16h
- Recueil des urines (chronophage) et remplissage questionnaires
- Préparation et envoi des colis au laboratoire de CHU de Grenoble

CHU de Grenoble

Contexte

Méthodologie

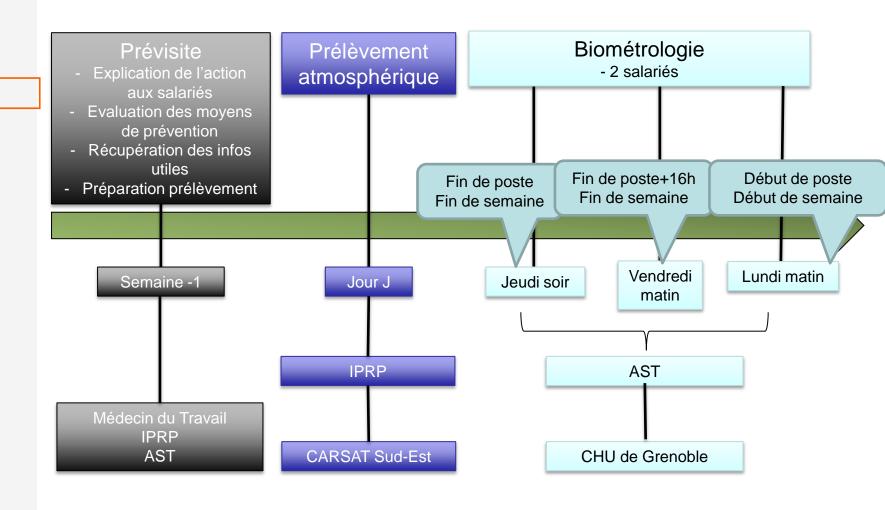
IPRP

Médecin

AST

- Connaissance des protocoles Biotox
- > Facilité pour l'envoi des échantillons
- Analyse des échantillons
- Résultats et interprétations

Synthèse


Contexte

Méthodologie

IPRP

Médecin

AST

Techniques

Contexte

Méthodologie

IPRP

Médecin

AST

Conclusion

○ Evaluation de l'exposition → évaluation des moyens de prévention

- Local d'exploitation
 - Surpression
 - Apport d'air neuf
 - Hors pollution extérieure
 - Filtration
- Parking
 - Ventilation (renouvellement d'air)
 - Limiter le temps d'exposition
- Monoxyde de carbone
 - Meilleur traceur avec les méthodes utilisées actuellement
 - Peut-être utilisé pour argumenter auprès de l'employeur

Travail d'équipe

Contexte

Méthodologie

IPRP

Médecin

AST

Conclusion

Apport de l'équipe pluridisciplinaire

- Crédibilité
- Organisation facilitée grâce à l'AST
- Biométrologie en plus des prélèvements atmosphérique
- Echanges avec le médecin et l'AST sur les résultats
- Retour à l'entreprise complémentaire

Partenaires extérieur

- CARSAT:
 - Apport technique
 - Gratuité
- CHU de Grenoble
 - Apport technique
 - Facilité d'échange malgré la distance

Avenir

- Intégration des IDEST?
- Travail en équipe à plus grande échelle?
 - Mutualisation des moyens
 - Enrichissement des études existantes au lieu de recommencer à 0

Fin de la présentation

Fumées d'échappement : Toxicité

Contexte

Méthodologie

IPRP

Médecin

AST

Conclusion

ANSES : 275 substances

Plus problématiques:

- Monoxyde de carbone (CO)
- Oxydes d'azote (NOx)
- Hydrocarbures Aromatiques polycycliques (HAP)
- Particules diesel
- Ø ...

Organes cibles :

- Poumon
- Vessie?

Biométrologie : Détails

Contexte

Méthodologie

IPRP

Médecin

AST

Conclusion

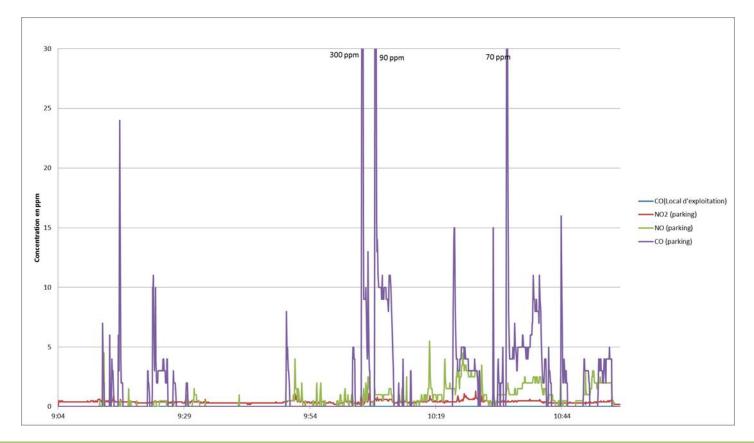
Urine : choix des métabolites

- HAP : 1-Hydroxypyrène urinaire (1-OHP)
- Benzo(a)pyrène : 3-Hydroxy-Benzo-a-Pyrene urinaire (3-OHBaP)
- Benzène : Acide S-phenyl mercapturique urinaire (S-PMA)
- Air expiré
 - O CO
- Stratégie de mesurage
 - Effectif surveillé : 2 salariés volontaires par parking, de préférence :
 - Non fumeur
 - Pas d'activité sportive intense 24h avant le prélèvement
 - Pas de grillade 24h avant le prélèvement
 - Temps complet
- Période des prélèvements
 - Début de semaine / Début de poste : (HAP, Benzo(a)pyrène, Benzène)
 - Fin de semaine / Fin de poste : (CO expiré, HAP, Benzène)
 - Fin de semaine / Fin de poste + 16h : (Benzo(a)pyrène)

Contexte

Méthodologie

IPRP


Médecin

AST

Conclusion

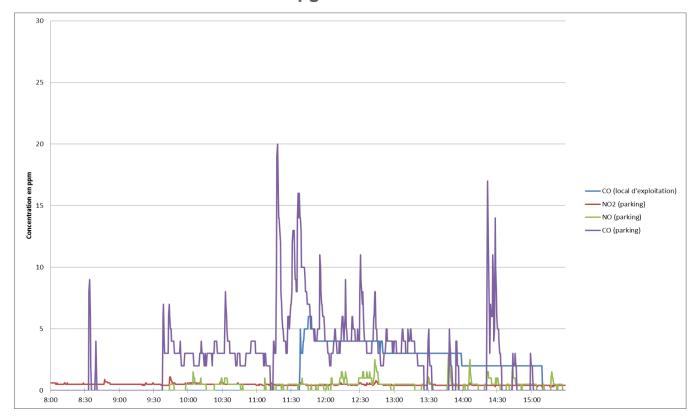
Analyse des résultats

- CO, HAP non détectables
- Particules diesel < 300 μg/m³ mais mesures variables

Contexte

Méthodologie

IPRP


Médecin

AST

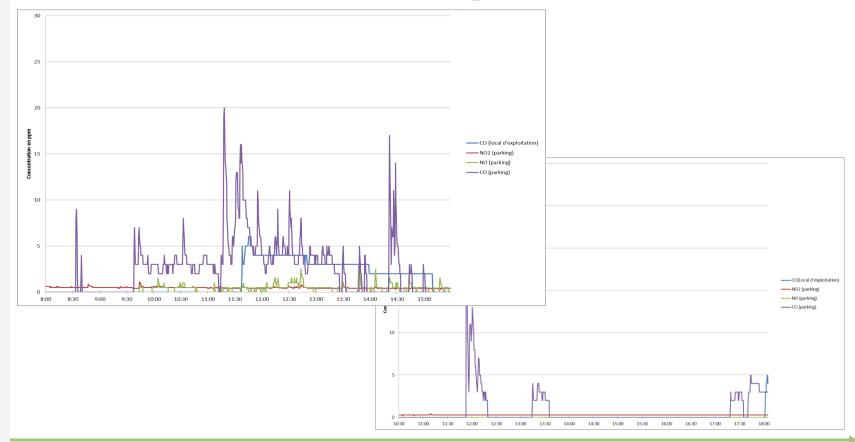
Conclusion

Non surpression

- présence de CO
- HAP non détectables
- Particules diesel < 300 μg/m³ mais mesures variables</p>

Prélèvements atmosphérique : Parking (Bornes de sortie)

Contexte


Méthodologie

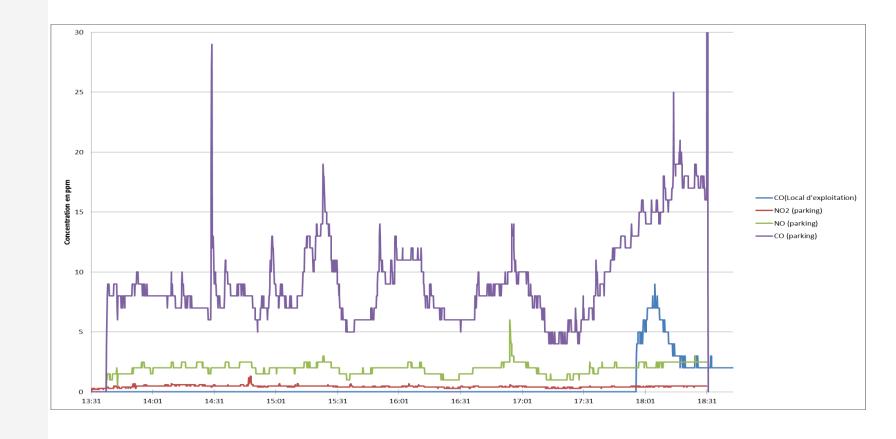
IPRP

Médecin

AST

- HAP non détectables
- CO traceur plus sensible que NO ou NO₂

Prélèvements atmosphérique : Parking (Bornes de sortie)


Contexte

Méthodologie

IPRP

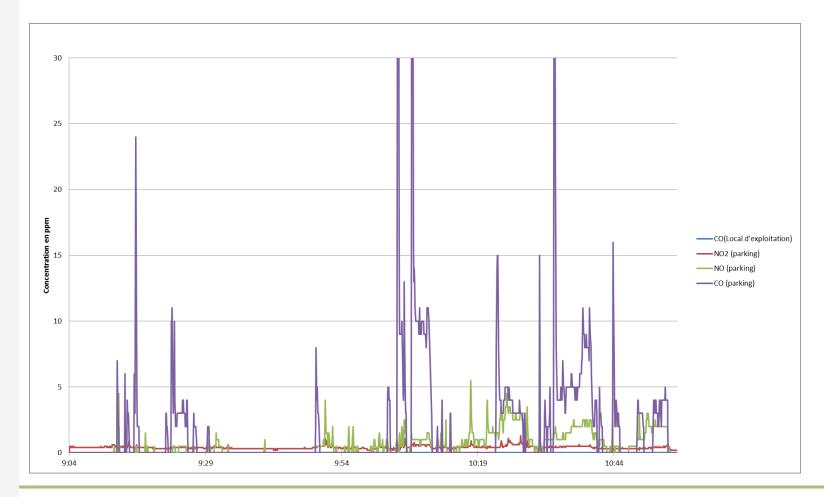
Médecin

AST

Prélèvements atmosphérique : Parking (Bornes de sortie)

Contexte

Méthodologie


IPRP

Médecin

AST

Conclusion

Parfois, présence de NO₂ mais pas de CO

